If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9x2 + -40x + 56 = 0 Reorder the terms: 56 + -40x + 9x2 = 0 Solving 56 + -40x + 9x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 6.222222222 + -4.444444444x + x2 = 0 Move the constant term to the right: Add '-6.222222222' to each side of the equation. 6.222222222 + -4.444444444x + -6.222222222 + x2 = 0 + -6.222222222 Reorder the terms: 6.222222222 + -6.222222222 + -4.444444444x + x2 = 0 + -6.222222222 Combine like terms: 6.222222222 + -6.222222222 = 0.000000000 0.000000000 + -4.444444444x + x2 = 0 + -6.222222222 -4.444444444x + x2 = 0 + -6.222222222 Combine like terms: 0 + -6.222222222 = -6.222222222 -4.444444444x + x2 = -6.222222222 The x term is -4.444444444x. Take half its coefficient (-2.222222222). Square it (4.938271604) and add it to both sides. Add '4.938271604' to each side of the equation. -4.444444444x + 4.938271604 + x2 = -6.222222222 + 4.938271604 Reorder the terms: 4.938271604 + -4.444444444x + x2 = -6.222222222 + 4.938271604 Combine like terms: -6.222222222 + 4.938271604 = -1.283950618 4.938271604 + -4.444444444x + x2 = -1.283950618 Factor a perfect square on the left side: (x + -2.222222222)(x + -2.222222222) = -1.283950618 Can't calculate square root of the right side. The solution to this equation could not be determined.
| -7.5=t(.8)+.5(9.8)(.8*.8) | | R^2+11r+18= | | 3c=11/5 | | -4+7x+8-8x= | | 14.95+.13x= | | (-2m^3+13m+4m^2)+(12m^3-6m^2-10m)= | | x+4-3=5 | | p=6x+2y | | 3x^2+bx-2= | | (6x+1)+(6)=10x-1 | | -3C+12=-33 | | 4x+37=3 | | -4=7x+-8x | | -4(4-7x)=8x+4 | | -3C+12=33 | | 62-6x=3x+15 | | (c-5)-2=7 | | (p^5-2-10p^4)-(-12p^4+12p^2-13p^5)= | | 2n+14=52 | | -x+3=8x+8 | | 73+173+1= | | 3xy-6xyz=0 | | 22-3.5=10+2.5t | | 7(b+5)=38+6b | | (x^3+4+12x^5)+(2-3x^5-5x^3)= | | 6x-2x-10=12 | | 3h-12=20-5h | | x+.04x=3000 | | 3p-1=5p-5-14-4p | | -4x-7(-5x-16)=-198 | | 3s-7=4-5s | | 3(4x+2)-5x=7(x-4) |